
SAARTHILMS

C++

1. Two Sum

• class Solution {

 public:

 vector<int> twoSum(vector<int>& nums, int target) {

 unordered_map<int, int> m;

 for (int i = 0; i < nums.size(); i++) {

 if (m.count(target - nums[i]))

 return {m[target - nums[i]], i};

 m[nums[i]] = i;

 }

 return {};

 }

};

2. Add
Two Numbers

• class Solution {

• public:

• ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {

• ListNode dummy(0);

• ListNode* curr = &dummy;

• int carry = 0;

•

• while(l1 || l2 || carry) {

• int sum = carry;

• if(l1) sum += l1->val, l1 = l1->next;

• if(l2) sum += l2->val, l2 = l2->next;

• carry = sum / 10;

• curr->next = new ListNode(sum % 10);

• curr = curr->next;

• }

• return dummy.next;

• }

• };

7. Reverse
Integer

• class Solution {

• public:

• int reverse(int x) {

• long rev = 0;

• while(x) {

• rev = rev * 10 + x % 10;

• x /= 10;

• }

• return (rev > INT_MAX || rev < INT_MIN) ? 0 : rev;

• }

• };

9. Palindrome Number

• class Solution {

• public:

• bool isPalindrome(int x) {

• if(x < 0) return false;

• long rev = 0, temp = x;

• while(temp) {

• rev = rev * 10 + temp % 10;

• temp /= 10;

• }

• return rev == x;

• }

• };

14. Longest Common Prefix

• class Solution {

• public:

• string longestCommonPrefix(vector<string>& strs) {

• if(strs.empty()) return "";

• string pref = strs[0];

• for(int i = 1; i < strs.size(); i++) {

• while(strs[i].find(pref) != 0)

• pref.pop_back();

• }

• return pref;

• }

• };

20. Valid
Parentheses

• class Solution {

• public:

• bool isValid(string s) {

• stack<char> st;

• for(char c : s) {

• if(c=='('||c=='{'||c=='[') st.push(c);

• else {

• if(st.empty()) return false;

• if((c==')'&&st.top()!='(') ||

• (c=='}'&&st.top()!='{') ||

• (c==']'&&st.top()!='['))

• return false;

• st.pop();

• }

• }

• return st.empty();

• }

• };

•

21. Merge
Two
Sorted Lists

• class Solution {

• public:

• ListNode* mergeTwoLists(ListNode* l1, ListNode* l2) {

• ListNode dummy(0);

• ListNode* curr = &dummy;

• while(l1 && l2) {

• if(l1->val < l2->val) curr->next = l1, l1 = l1->next;

• else curr->next = l2, l2 = l2->next;

• curr = curr->next;

• }

• curr->next = l1 ? l1 : l2;

• return dummy.next;

• }

• };

26. Remove
Duplicates from

Sorted Array

• class Solution {

• public:

• int removeDuplicates(vector<int>& nums)
{

• int i = 0;

• for(int j = 1; j < nums.size(); j++)

• if(nums[j] != nums[i])

• nums[++i] = nums[j];

• return i + 1;

• }

• };

27. Remove Element

• class Solution {

• public:

• int removeElement(vector<int>& nums, int val) {

• int k = 0;

• for(int x : nums)

• if(x != val) nums[k++] = x;

• return k;

• }

• };

28. Find the Index of the
First Occurrence

• class Solution {

• public:

• int strStr(string haystack, string needle) {

• if(needle.empty()) return 0;

• for(int i = 0; i + needle.size() <= haystack.size(); i++)

• if(haystack.substr(i, needle.size()) == needle)

• return i;

• return -1;

• }

• };

32. Longest
Valid Parentheses

• class Solution {

• public:

• int longestValidParentheses(string s) {

• stack<int> st;

• st.push(-1);

• int ans = 0;

• for(int i = 0; i < s.size(); i++) {

• if(s[i] == '(') st.push(i);

• else {

• st.pop();

• if(st.empty()) st.push(i);

• else ans = max(ans, i - st.top());

• }

• }

• return ans;

• }

• };

35. Search
Insert Position

• class Solution {

• public:

• int searchInsert(vector<int>& nums, int target) {

• int l = 0, r = nums.size() - 1;

• while(l <= r) {

• int mid = l + (r - l) / 2;

• if(nums[mid] == target) return mid;

• if(nums[mid] < target) l = mid + 1;

• else r = mid - 1;

• }

• return l;

• }

• };

58. Length of
Last Word

• class Solution {

• public:

• int lengthOfLastWord(string s) {

• int len = 0;

• for(int i = s.size() - 1; i >= 0; i--) {

• if(s[i] != ' ') len++;

• else if(len > 0) break;

• }

• return len;

• }

• };

66. Plus One

• class Solution {

• public:

• vector<int> plusOne(vector<int>& digits) {

• for(int i = digits.size() - 1; i >= 0; i--) {

• if(digits[i] < 9) {

• digits[i]++;

• return digits;

• }

• digits[i] = 0;

• }

• digits.insert(digits.begin(), 1);

• return digits;

• }

• };

67.
Add Binary

• class Solution {

• public:

• string addBinary(string a, string b) {

• string res = "";

• int i = a.size()-1, j = b.size()-1, carry = 0;

• while(i>=0 || j>=0 || carry) {

• int sum = carry;

• if(i>=0) sum += a[i--]-'0';

• if(j>=0) sum += b[j--]-'0';

• res = char(sum%2 + '0') + res;

• carry = sum/2;

• }

• return res;

• }

• };

69. Sqrt(x)
• class Solution {

• public:

• int mySqrt(int x) {

• long l = 0, r = x;

• while(l <= r) {

• long mid = (l + r) / 2;

• if(mid * mid <= x && (mid + 1) * (mid + 1) > x)

• return mid;

• if(mid * mid > x) r = mid - 1;

• else l = mid + 1;

• }

• return 0;

• }

• };

70.
Climbing
Stairs

• class Solution {

• public:

• int climbStairs(int n) {

• if(n <= 2) return n;

• int a = 1, b = 2;

• for(int i = 3; i <= n; i++) {

• int c = a + b;

• a = b;

• b = c;

• }

• return b;

• }

• };

75. Sort Colors

• class Solution {

• public:

• void sortColors(vector<int>& nums) {

• int low = 0, mid = 0, high = nums.size() - 1;

• while(mid <= high) {

• if(nums[mid] == 0) swap(nums[low++], nums[mid++]);

• else if(nums[mid] == 1) mid++;

• else swap(nums[mid], nums[high--]);

• }

• }

• };

83. Remove Duplicates from Sorted
List

• class Solution {

• public:

• ListNode* deleteDuplicates(ListNode* head) {

• ListNode* curr = head;

• while(curr && curr->next) {

• if(curr->val == curr->next->val)

• curr->next = curr->next->next;

• else

• curr = curr->next;

• }

• return head;

• }

• };

88. Merge Sorted Array

• class Solution {

• public:

• void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {

• int i = m-1, j = n-1, k = m+n-1;

• while(j >= 0) {

• if(i >= 0 && nums1[i] > nums2[j])

• nums1[k--] = nums1[i--];

• else

• nums1[k--] = nums2[j--];

• }

• }

• };

94. Binary
Tree Inorder Traversal

• class Solution {

• public:

• vector<int> inorderTraversal(TreeNode* root) {

• vector<int> res;

• stack<TreeNode*> st;

• while(root || !st.empty()) {

• while(root) {

• st.push(root);

• root = root->left;

• }

• root = st.top(); st.pop();

• res.push_back(root->val);

• root = root->right;

• }

• return res;

• }

• };

100. Same Tree

• class Solution {

• public:

• bool isSameTree(TreeNode* p, TreeNode* q) {

• if(!p && !q) return true;

• if(!p || !q || p->val != q->val) return false;

• return isSameTree(p->left, q->left) &&

• isSameTree(p->right, q->right);

• }

• };

101.
Symmetric Tree

• class Solution {

• public:

• bool mirror(TreeNode* a, TreeNode* b) {

• if(!a && !b) return true;

• if(!a || !b || a->val != b->val) return false;

• return mirror(a->left, b->right) &&

• mirror(a->right, b->left);

• }

•

• bool isSymmetric(TreeNode* root) {

• return mirror(root, root);

• }

• };

104. Maximum
Depth of
Binary Tree

108. Convert
Sorted Array
to BST

110.
Balanced
Binary Tree

• class Solution {

• public:

• int height(TreeNode* root) {

• if(!root) return 0;

• int l = height(root->left);

• int r = height(root->right);

• if(l == -1 || r == -1 || abs(l - r) > 1) return -1;

• return 1 + max(l, r);

• }

•

• bool isBalanced(TreeNode* root) {

• return height(root) != -1;

• }

• };

111.
Minimum
Depth of
Binary Tree

• class Solution {

• public:

• int minDepth(TreeNode* root) {

• if(!root) return 0;

• if(!root->left) return 1 + minDepth(root->right);

• if(!root->right) return 1 + minDepth(root->left);

• return 1 + min(minDepth(root->left),

• minDepth(root->right));

• }

• };

112. Path Sum
• class Solution {

• public:

• bool hasPathSum(TreeNode* root, int targetSum) {

• if(!root) return false;

• if(!root->left && !root->right)

• return targetSum == root->val;

• return hasPathSum(root->left, targetSum - root->val) ||

• hasPathSum(root->right, targetSum - root->val);

• }

• };

118.
Pascal’s Triangle

• class Solution {

• public:

• vector<vector<int>> generate(int n) {

• vector<vector<int>> res(n);

• for(int i = 0; i < n; i++) {

• res[i].resize(i + 1, 1);

• for(int j = 1; j < i; j++)

• res[i][j] = res[i-1][j-1] + res[i-1][j];

• }

• return res;

• }

• };

119. Pascal’s Triangle II

• class Solution {

• public:

• vector<int> getRow(int row) {

• vector<int> res(row + 1, 1);

• for(int i = 1; i < row; i++)

• for(int j = i; j > 0; j--)

• res[j] += res[j - 1];

• return res;

• }

• };

121. Best Time to Buy and
Sell Stock
• class Solution {

• public:

• int maxProfit(vector<int>& prices) {

• int minP = INT_MAX, profit = 0;

• for(int p : prices) {

• minP = min(minP, p);

• profit = max(profit, p - minP);

• }

• return profit;

• }

• };

125. Valid
Palindrome

• class Solution {

• public:

• bool isPalindrome(string s) {

• int l = 0, r = s.size() - 1;

• while(l < r) {

• while(l < r && !isalnum(s[l])) l++;

• while(l < r && !isalnum(s[r])) r--;

• if(tolower(s[l++]) != tolower(s[r--])) return false;

• }

• return true;

• }

• };

136. Single Number

• class Solution {

• public:

• int singleNumber(vector<int>& nums) {

• int x = 0;

• for(int n : nums) x ^= n;

• return x;

• }

• };

141. Linked List Cycle
• class Solution {

• public:

• bool hasCycle(ListNode *head) {

• ListNode *slow = head, *fast = head;

• while(fast && fast->next) {

• slow = slow->next;

• fast = fast->next->next;

• if(slow == fast) return true;

• }

• return false;

• }

• };

151. Reverse Words in a String
• class Solution {

• public:

• string reverseWords(string s) {

• string res, word;

• stringstream ss(s);

• while(ss >> word)

• res = word + " " + res;

• return res.substr(0, res.size() - 1);

• }

• };

160. Intersection of Two
Linked Lists

• class Solution {

• public:

• ListNode *getIntersectionNode(ListNode *a, ListNode *b) {

• ListNode *p = a, *q = b;

• while(p != q) {

• p = p ? p->next : b;

• q = q ? q->next : a;

• }

• return p;

• }

• };

168. Excel Sheet Column Title

• class Solution {

• public:

• string convertToTitle(int n) {

• string res;

• while(n) {

• n--;

• res = char('A' + n % 26) + res;

• n /= 26;

• }

• return res;

• }

• };

169. Majority Element

• class Solution {

• public:

• int majorityElement(vector<int>& nums) {

• int cnt = 0, cand = 0;

• for(int n : nums) {

• if(cnt == 0) cand = n;

• cnt += (n == cand) ? 1 : -1;

• }

• return cand;

• }

• };

171. Excel Sheet
Column Number

• class Solution {

• public:

• int titleToNumber(string s) {

• int res = 0;

• for(char c : s)

• res = res * 26 + (c - 'A' + 1);

• return res;

• }

• };

	Slide 1: SAARTHILMS
	Slide 2: 1. Two Sum
	Slide 3: 2. Add Two Numbers
	Slide 4: 7. Reverse Integer
	Slide 5: 9. Palindrome Number
	Slide 6: 14. Longest Common Prefix
	Slide 7: 20. Valid Parentheses
	Slide 8: 21. Merge Two Sorted Lists
	Slide 9: 26. Remove Duplicates from Sorted Array
	Slide 10: 27. Remove Element
	Slide 11: 28. Find the Index of the First Occurrence
	Slide 12: 32. Longest Valid Parentheses
	Slide 13: 35. Search Insert Position
	Slide 14: 58. Length of Last Word
	Slide 15: 66. Plus One
	Slide 16: 67. Add Binary
	Slide 17: 69. Sqrt(x)
	Slide 18: 70. Climbing Stairs
	Slide 19: 75. Sort Colors
	Slide 20: 83. Remove Duplicates from Sorted List
	Slide 21: 88. Merge Sorted Array
	Slide 22: 94. Binary Tree Inorder Traversal
	Slide 23: 100. Same Tree
	Slide 24: 101. Symmetric Tree
	Slide 25: 104. Maximum Depth of Binary Tree
	Slide 26: 108. Convert Sorted Array to BST
	Slide 27: 110. Balanced Binary Tree
	Slide 28: 111. Minimum Depth of Binary Tree
	Slide 29: 112. Path Sum
	Slide 30: 118. Pascal’s Triangle
	Slide 31: 119. Pascal’s Triangle II
	Slide 32: 121. Best Time to Buy and Sell Stock
	Slide 33: 125. Valid Palindrome
	Slide 34: 136. Single Number
	Slide 35: 141. Linked List Cycle
	Slide 36: 151. Reverse Words in a String
	Slide 37: 160. Intersection of Two Linked Lists
	Slide 38: 168. Excel Sheet Column Title
	Slide 39: 169. Majority Element
	Slide 40: 171. Excel Sheet Column Number

