SAARTHILMS

C++

I‘ SAARTHILMS

1. Two Sum

class Solution {
public:
vector<int>twoSum(vector<int>& nums, int target){
unordered_map<int, int>m;
for (inti=0; i< nums.size(); i++){
if (m.count(target - numsi]))
return {m[target - numsli]], i};
m[numsl[i]] = i;
}

return {};

SAARTHILMS

* class Solution {

* public:

. ListNode* addTwoNumbers(ListNode* 11, ListNode* 12) {
. ListNode dummy(@);

. ListNode* curr = &dummy;

. int carry = 0;

2 dd . while(11 || 12 || carry) {
® ‘ \ . int sum = carry;

T N b . if(11) sum += 11->val, 11 = 11->next;
WO u m ers . if(12) sum += 12->val, 12 = 12->next;
. carry = sum / 10;
. curr->next = new ListNode(sum % 10);
. curr = curr->next;
. }
. return dummy.next;
. }

}s

7. Reverse

Integer

class Solution {

public:

}s

int reverse(int x) {
long rev = 0;
while(x) {
rev = rev * 10 + x % 10;
X /= 10;
}

return (rev > INT_MAX || rev < INT_MIN) ? O :

rev;

9. Palindrome Number

* class Solution {

* public:

. bool isPalindrome(int x) {
. if(x < @) return false;
. long rev = 0, temp = x;
. while(temp) {

. rev = rev * 10 + temp % 10;
. temp /= 10;

. }

. return rev == X;

. }

.

14. Longest Common Prefix

 class Solution {

* public:

. string longestCommonPrefix(vector<string>& strs) {
. if(strs.empty()) return "";

. string pref = strs[0];

. for(int i = 1; i < strs.size(); i++) {

. while(strs[i].find(pref) != 0)

. pref.pop_back();

y }

. return pref;

y }

class Solution {
public:
. . bool isValid(string s) {
20 o va ll d . stack<char> st;
. for(char c : s) {
Pa re ntheses . if(c=="("|lc=="{"||c=="[") st.push(c);
. else {
if(st.empty()) return false;
if((c==")"'8&st.top()!="(") ||
(c=="}'&st.top()!="{") ||
(c=="]"8&st.top()!="["))
return false;

st.pop();

}
return st.empty();

21. Merge
Two
Sorted Lists

class Solution {

public:

ListNode* mergeTwolLists(ListNode* 11, ListNode* 12) {

ListNode dummy(®@);

ListNode* curr = &dummy;

while(11 && 12) {

if(11->val < 12->val) curr->next = 11, 11 = 11->next;

else curr->next =

curr = curr->next;

}

curr->next = 11 ? 11 :

return dummy.next;

12, 12 = 12->next;

12;

« class Solution {
 public:

int removeDuplicates(vector<int>& nums)

26. Remove K
Duplicates from |

int 1 = 9;

. for(int j = 1; j < nums.size(); j++)
Sorted Array . if(nums[j] !'= nums[i])

. nums[++i] = nums[j];

return 1 + 1;

*};

27. Remove Element

class Solution {

* public:

. int removeElement(vector<int>& nums, int val) {

. int k = 0;

. for(int x : nums)

. if(x !'= val) nums[k++] = x;

. return k;

. } A
AVa
—

28. Find the Index of the
First Occurrence

class Solution {

* public:

. int strStr(string haystack, string needle) {

. if(needle.empty()) return 9;

. for(int i = 0; i + needle.size() <= haystack.size(); i++)
. if(haystack.substr(i, needle.size()) == needle)

. return i;

. return -1; ff“\
C —

class Solution {
public:
int longestValidParentheses(string s) {
. stack<int> st;
32. Longest

st.push(-1);

Valid Parentheses : int ans - o;

for(int i = 0; i < s.size(); i++) {

if(s[i] == "(') st.push(i);
else {
st.pop();

if(st.empty()) st.push(i);

else ans = max(ans, i - st.top());

}

return ans;

class Solution {

public:
int searchInsert(vector<int>& nums, int target) {

int 1 =0, r = nums.size() - 1;

35. Search .
Insert POSition if(nums[mid] == target) return mid;

if(nums[mid] < target) 1 = mid + 1;

else r = mid - 1;

}

return 1;

58. Length of

Last Word

*};

 class Solution {

e public:

int lengthOfLastWord(string s) {
int len = 0;
for(int i = s.size() - 1; i >= 0;
if(s[i] !'= " ') len++;
else if(len > @) break;
}

return len;

i--) A

class Solution {

public:

vector<int> plusOne(vector<int>& digits) {

for(int i = digits.size() - 1; i >=0; i--) {

. if(digits[i] < 9) {
. digits[i]++;
. return digits;
66. Plus One . }
. digits[i] = ©;
: }
. digits.insert(digits.begin(), 1);
. return digits;
. }

67.
Add Binary

class Solution {

public:

s

string addBinary(string a, string b) {

string res = "";

int i = a.size()-1, j = b.size()-1, carry = 0;

while(i>=0 || j>=0 || carry) {
int sum = carry;
if(i>=0) sum += a[i--]-'@';
if(j>=0) sum += b[j--]-"'0";
res = char(sum%2 + '@') + res;
carry = sum/2;

}

return res;

class Solution {

69. Sqrt(x) T it s 0

. long 1 =0, r = x;

. while(l <= r) {

. long mid = (1 + r) / 2;

. if(mid * mid <= x & (mid + 1) * (mid + 1) > x)
. return mid;

. if(mid * mid > x) r = mid - 1;

. else 1 = mid + 1;

}

return 0;

class Solution {

 public:

. int climbStairs(int n) {

. if(n <= 2) return n;
70 . int a =1, b = 2;

y . for(int i = 3; i <= n; i++) {
Climbing - int ¢ = a + b;
S; o . a = b;
tairs | T

. }

. return b;

. }

° 1

75. Sort Colors

class Solution {

* public:

. void sortColors(vector<int>& nums) {

. int low = @, mid = @, high = nums.size() - 1;

. while(mid <= high) {

. if(nums[mid] == @) swap(nums[low++], nums[mid++]);
. else if(nums[mid] == 1) mid++;

. else swap(nums[mid], nums[high--1]);

y }

. } k

83. Remove Duplicates from Sorted
List

class Solution {
public:
ListNode* deleteDuplicates(ListNode* head) {
ListNode* curr = head;
while(curr && curr->next) {
if(curr->val == curr->next->val)
curr->next = curr->next->next;
else
curr = curr->next;

}

return head;

88. Merge Sorted Array

class Solution {

* public:

. void merge(vector<int>& numsl, int m, vector<int>& nums2, int n) {
. int i = m-1, j = n-1, k = m+n-1;

. while(j >= 0) {

. if(i >= 0 && nums1[i] > nums2[j])

. nums1[k--] = numsl[i--];

. else

. nums1[k--] = nums2[j--1;

. }

<)

94. Binary
Tree Inorder Traversal

e class Solution {

e public:

. vector<int> inorderTraversal(TreeNode* root) {

. vector<int> res;

. stack<TreeNode*> st;

. while(root || !st.empty()) {

. while(root) {

. st.push(root);

. root = root->left;

. }

. root = st.top(); st.pop();

. res.push_back(root->val);

. root = root->right; rs

. return res; A ;;'13
___ _______________________|

100. Same Tree

class Solution {
public:
bool isSameTree(TreeNode* p, TreeNode* q) {
if(!'p & !q) return true;
if(!p || !'q || p->val != g->val) return false;
return isSameTree(p->left, g->left) &&
isSameTree(p->right, g->right);

}s

class Solution {

 public:

. bool mirror(TreeNode* a, TreeNode* b) {

. if(!'a & !b) return true;

. if('a || !'b || a->val != b->val) return false;
101 . return mirror(a->left, b->right) &&

: . . mirror(a->right, b->left);

Symmetric Tree ,)

. bool isSymmetric(TreeNode* root) {

. return mirror(root, root);

y }

* 5 /

N\

|

\ 104. Maximum

Depth of + public:
Binary Tree . int maxDepth(TreeNode* root) {

/,
/,
if(!root) return 0;

return 1 + max(maxDepth(root->left),

maxDepth(root->right));

D\ V/NY

N\

|

\ 108. Convert

Sorted Array
TreeNode* build(vector<int>& nums, int 1, int r) {
to BST . if(1 > r) return nullptr;

class Solution {

public:

. intmid = (1 + r) / 2;

. TreeNode* root = new TreeNode(nums[mid]);
. root->left = build(nums, 1, mid - 1);

. root->right = build(nums, mid + 1, r);

. return root;

. TreeNode* sortedArra IoBST(vector<int>& nums) {

%‘m\\\ W 5 \

* class Solution {

110. e

. int height(TreeNode* root) {
Ba la n ced . if(!root) return 0;
. int 1 = height(root->left);
B. T . int r = height(root->right);
Inary ree . if(1 == -1 || r ==-1 || abs(1l - r) > 1) return -1;
. return 1 + max(l, r);
. }

bool isBalanced(TreeNode* root) {

return height(root) != -1;

* class Solution {

* public:
1 1 1 ° . int minDepth(TreeNode* root) {

. if(!root) return 0;

I\’|‘- o
In I l II l . . if(!root->left) return 1 + minDepth(root->right);
Depth Of . if(!root->right) return 1 + minDepth(root->left);

. return 1 + min(minDepth(root->left),
~ . minDepth(root->right));
Binary Tree o 1 1
b

A SAARTHILM

112. Path Sum

class Solution {

public:

bool hasPathSum(TreeNode* root, int targetSum) {
if(!root) return false;
if(!root->left & & !root->right)

return targetSum == root->val;

return hasPathSum(root->left, targetSum - root->val) ||
hasPathSum(root->right, targetSum - root->val);

s

118.

Pascal’s Triangle

class Solution {
e public:

. vector<vector<int>> generate(int n) {

. vector<vector<int>> res(n);

. for(int 1 = 9; i < n; i++) {

. res[i].resize(i + 1, 1);

. for(int j = 1; j < 1i; j++)

y res[i][J] = res[i-1][j-1] + res[i-1][]];
y }

. return res;

y }

119. Pascal’s Triangle |l

class Solution {
public:
vector<int> getRow(int row) {
vector<int> res(row + 1, 1);
for(int i = 1; i < row; i++)
for(int j = 1i; j > 0; j--)
res[j] += res[j - 1];

return res;

F
F

“| 121. Best Time to Buy and
Sell Stock

 class Solution {
 public:
int maxProfit(vector<int>& prices) {
int minP = INT_MAX, profit = 0;
for(int p : prices) {
minP = min(minP, p);
profit = max(profit, p - minP);
}

return profit;

e e ——————————————————————————————

class Solution {

public:

bool isPalindrome(string s) {
. int 1 =0, r = s.size() - 1;
while(1l < r) {
while(l < r && !isalnum(s[1])) 1++;

°
125. Valid

et . while(l < r && !isalnum(s[r])) r--;
Pa ll n d ro m e° if(tolower(s[1l++]) != tolower(s[r--])) return false;

}
. return true;
. }
3

136. Single Number

class Solution {
public:
int singleNumber(vector<int>& nums) {
int x = 0;
for(int n : nums) x "= n;

return Xx;

s

141. Linked List Cycle

class Solution {

* public:

. bool hasCycle(ListNode *head) {

. ListNode *slow = head, *fast = head;
. while(fast & fast->next) {

. slow = slow->next;

. fast = fast->next->next;

. if(slow == fast) return true;

. }

. return false;

. }

151. Reverse Words in a String

class Solution {

public:

}s

string reverseWords(string s) {
string res, word;
stringstream ss(s);
while(ss >> word)

res = word + + res;

return res.substr(9, res.size() - 1);

“| 160. Intersection of Two
Linked Lists

* class Solution {
* public:
ListNode *getIntersectionNode(ListNode *a, ListNode *b) {
ListNode *p = a, *q = b;
while(p !'= q) {
p=p ? p->next : b;
qg=49g ? g->next : a;
}

return p;

N

168. Excel Sheet Column Title

class Solution {
public:
string convertToTitle(int n) {
string res;
while(n) {
n--;
res = char('A' + n % 26) + res;
n /= 26;
}

return res;

} ; _."' .’ {.-.:. I....

“l 169. Majority Element

class Solution {

 public:

. int majorityElement(vector<int>& nums) {
. int cnt = 9, cand = 0;

. for(int n : nums) {

. if(cnt == @) cand = n;

. cnt += (n == cand) ? 1 : -1;

y }

. return cand;

y }

*)

171. Excel Sheet
Column Number

* class Solution {
 public:
int titleToNumber(string s) {
int res = 0;
for(char c : s)

res = res * 26 + (¢ - 'A'" + 1);

return res;

1}

	Slide 1: SAARTHILMS
	Slide 2: 1. Two Sum
	Slide 3: 2. Add Two Numbers
	Slide 4: 7. Reverse Integer
	Slide 5: 9. Palindrome Number
	Slide 6: 14. Longest Common Prefix
	Slide 7: 20. Valid Parentheses
	Slide 8: 21. Merge Two Sorted Lists
	Slide 9: 26. Remove Duplicates from Sorted Array
	Slide 10: 27. Remove Element
	Slide 11: 28. Find the Index of the First Occurrence
	Slide 12: 32. Longest Valid Parentheses
	Slide 13: 35. Search Insert Position
	Slide 14: 58. Length of Last Word
	Slide 15: 66. Plus One
	Slide 16: 67. Add Binary
	Slide 17: 69. Sqrt(x)
	Slide 18: 70. Climbing Stairs
	Slide 19: 75. Sort Colors
	Slide 20: 83. Remove Duplicates from Sorted List
	Slide 21: 88. Merge Sorted Array
	Slide 22: 94. Binary Tree Inorder Traversal
	Slide 23: 100. Same Tree
	Slide 24: 101. Symmetric Tree
	Slide 25: 104. Maximum Depth of Binary Tree
	Slide 26: 108. Convert Sorted Array to BST
	Slide 27: 110. Balanced Binary Tree
	Slide 28: 111. Minimum Depth of Binary Tree
	Slide 29: 112. Path Sum
	Slide 30: 118. Pascal’s Triangle
	Slide 31: 119. Pascal’s Triangle II
	Slide 32: 121. Best Time to Buy and Sell Stock
	Slide 33: 125. Valid Palindrome
	Slide 34: 136. Single Number
	Slide 35: 141. Linked List Cycle
	Slide 36: 151. Reverse Words in a String
	Slide 37: 160. Intersection of Two Linked Lists
	Slide 38: 168. Excel Sheet Column Title
	Slide 39: 169. Majority Element
	Slide 40: 171. Excel Sheet Column Number

